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a  b  s  t  r  a  c  t

Wahoo  (Acanthocybium  solandri)  is distributed  in all  tropical  and  subtropical  oceans  and  caught  inci-
dentally  by  the  tuna  purse-seine  fishery  in the Eastern  Pacific  Ocean  (EPO).  Generalized  additive  models
(GAM)  and  boosted  regression  trees  (BRT)  were  used  to analyze  relationships  between  presence  of  wahoo
in logbook  data  from  the  Mexican  tuna  purse-seine  fishery  with  environment,  geographic  area  and  set
type (unassociated,  associated  with  dolphins  or floating  objects  set).  Model  performance  was  evaluated
using  changes  in  deviance  in the  fitted  models  and  the  area  under  the  receiver  operating  characteristic
curve  (ROC).  Results  indicate  little  difference  between  the  performance  of  GAM  and  BRT  models.  Both
hlorophyll-a
ea-surface temperature
loating objects

methods  were  consistent  with  predictions  of presence  of wahoo  with  respect  to  the  variables  used.  Set
type  was  the  single  most  important  predictor  of variation  in  presence  of  wahoo,  with  highest  probability
of  incidental  catch  in  sets  made  on  floating  objects.  With  respect  to environmental  factors,  sea  surface
temperature  (20–25 ◦C)  and  chlorophyll-a  concentration  (<2  mg  m−3) determined  the  highest  probabil-
ity  of  incidental  catch  of wahoo.  The  coast  of  Baja  California  Sur,  Mexico  and  south  of the equator  were
predicted  to have  a  high  probability  of incidental  catch  of  wahoo.
. Introduction

The wahoo, Acanthocybium solandri (Scombridae), is a highly
igratory pelagic species distributed in tropical and subtropical
aters worldwide (Collette, 2002; Oxenford et al., 2003). Larval

nd adult wahoo occur in both oceanic and coastal waters of the
acific Ocean between latitudes of 30◦N and 25◦S. Key habitats for
he species include island margins, oceanic shoals, thermal fronts
nd current margins (Garber et al., 2001). Wahoo also tend to
ssociate with natural flotsam or artificial fish aggregating devices
FADs) and are incidentally caught in fisheries targeting these struc-
ures (Laurans et al., 1999; Reynal et al., 1999). Spawning for this
pecies has been observed throughout the year in equatorial waters
etween 14◦N and 15◦S (Matsumoto, 1967).
Wahoo are exploited by commercial fisheries worldwide. Most
f commercial catches of wahoo is originated from the Atlantic
cean, but in recent years, fisheries in Pacific Ocean has been

∗ Corresponding author. Tel.: +52 612 1234658; fax: +52 612 122 53 22.
E-mail address: rmartinezr0604@ipn.mx (R.O. Martínez-Rincón).

304-3800/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2012.03.006
© 2012 Elsevier B.V. All rights reserved.

increasing (FAO, 2011). Recreational catch is largely unknown, but
may  significant throughout most of their geographic range and
potentially exceed that of commercial catches in some regions
(Zischke, 2012). In the Eastern Pacific Ocean (EPO) wahoo are inci-
dentally caught and retained as a byproduct in the purse-seine
tuna fishery, which primarily sets over unassociated schools, over
dolphin-associated tuna schools, or around natural (e.g., algae, ani-
mal  carcasses, logs, etc.) or artificial (e.g., FADs) floating objects.
They are also exploited by recreational fisheries, with limited man-
agement arrangements in place for the species.

There are increasing concerns regarding the long-term sustain-
ability of some species caught incidentally as bycatch in tuna seine
fisheries. This is primarily due to limited information on the biol-
ogy, habitat preference and distribution of these species due to their
relatively low importance compared to the primary tuna species,
which has hindered quantitative population assessments to guide
management.
In this study we  compare the performance of generalized addi-
tive models (GAM) and boosted regression trees (BRT) to determine
the environmental and geographical variables that influence the
distribution of wahoo.

dx.doi.org/10.1016/j.ecolmodel.2012.03.006
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:rmartinezr0604@ipn.mx
dx.doi.org/10.1016/j.ecolmodel.2012.03.006
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GAM are perhaps the most widely used statistical model-
ng tools to analyze relationships between the distributions of
he species and their environment, particularly in terrestrial and

arine studies. This method is based on the use of non-parametric
moothing functions that allows flexible description of complex
pecies responses to environment (Leathwick et al., 2006). BRT has
arely been used in ecology (Moisen et al., 2006; Elith et al., 2008).
he BRT approach differs from traditional regression methods that
roduce the ‘best’ model, instead using the technique of boosting to
ombine large numbers of relative simple tree models and optimize
redictive performance (Elith et al., 2008).

. Data and methods

.1. Database

.1.1. Catch data
Observer data from Mexico’s National Program for the Exploita-

ion of Tuna and Protection of Dolphins (Programa Nacional de
provechamiento del Atún y Protección de los Delfines, PNAAPD)
ere filtered for incidental catch of wahoo (which corresponds to
50% of fishing operations carried in the EPO from 1998 to 2007)
nd used for the analyses in this study. Records in this database
nclude the date and time (start and finish) of sets, geographical
osition (latitude and longitude), estimated number of fish caught
y species and set type, and the manner in which tunas were
etected and targeted: association with floating objects, associa-
ion with herds of dolphins, and as free-swimming (unassociated)
chools visible at the surface.

.1.2. Environmental data
Environmental data consisted of the mean monthly values of sea

urface temperature (SST), sea surface height (SSH), chlorophyll-
 concentration, and Oceanic Niño Index (ONI). Data were
btained from http://coastwatch.pfeg.noaa.gov/erddap/index.html
nd http://www.cpc.ncep.noaa.gov/.

.1.3. Datasets
Database was randomly divided in two dataset: training set

70%) and test set (30%). The training set was  used to build the
odels and the test set was used for testing model performance.

.2. Models

Incidental catch of wahoo was the response variable for the
odels and was measured in units of presence/absence (1/0). The

redictor variables used were: environmental variables (SST, SSH,
hlorophyll-a, and ONI); spatial variables (longitude and latitude);
nd set type (Table 1). Models were constructed using all predictor
ariables and no interactions terms were used in order to better
ompare between models.

.2.1. Generalized additive models
GAM is a generalized linear model with a linear predictor involv-

ng a sum of smooth functions of covariates (Wood, 2006). All GAM
ere fitted in R (R Development Core Team, 2011) version 2.13.0,
sing mgcv package version 1.7–5 (Wood, 2011), assuming a bino-
ial error distribution. The test dataset was used as independent

ata to predict the incidental catch of wahoo using the final model
onstructed with training dataset.

.2.2. Boosted regression trees

All BRT models were fitted in R using the gbm and dismo pack-

ges (Ridgeway, 2010; Hijmans et al., 2011). For BRT, model fitting
equires the specification of three parameters: (a) learning rate,
hich controls the rate at which model complexity is increased;
al Modelling 233 (2012) 20– 25 21

(b) the number of trees (even though BRT are largely resistant to
model over-fitting, is still necessary to determine the optimum
number of trees) and (c) the number of splits in each tree (also
called the interaction depth in gbm), which controls the size of the
trees. A value of one corresponds to an additive model with non
interacting variables where each tree consists of a single node or
decision rule. A value of two indicates that two nodes are used in
each tree, which corresponds to a model with two-way interac-
tions, and so on. Error was  assumed to fit a Bernoulli distribution.
For a cogent and comprehensive account of the development and
application of BRT, the reader is referred to Elith et al. (2008).

Formulae developed by Friedman (2001) were implemented in
the gbm library to estimate the relative influence of predictor vari-
ables. The measures are based on the number of times a variable is
selected for splitting, weighted by the squared improvement to the
model as a result of each split, and averaged over all trees (Friedman
and Meulman, 2003). The relative contribution (or influence) of
each variable is scaled so that the sum adds to 100, with higher
numbers indicating stronger influence on the response.

2.2.3. Relationship between response and predictor variables
The relationships between presence of wahoo and each predic-

tor variable explained by GAM and BRT models were plotted using
partial dependence plots (i.e., the effect of a variable on wahoo pres-
ence after accounting for the average effects of all other variables
in the model (Friedman, 2001)). The fitted functions from partial
dependence plots provide an indication of how presences of wahoo
in catches depend on each predictor variable.

2.2.4. Comparative performance
Comparison of the performance of GAM and BRT models was

carried out using deviance explained, percent correctly classified
(PCC), sensitivity (i.e., proportion of observed positives correctly
predicted), specificity (proportion of observed negatives correctly
predicted) and the area under the receiver operator character-
istic curve (ROC which gives a measure of the degree to which
fitted values discriminate between observed values). PresenceAb-
sence library was used (Freeman, 2007) to get the last four values.
This library provides a set of functions useful when evaluating the
results of presence–absence models. Because the test data set was
used for testing the performance of models, deviance explained is
not available.

2.2.5. Spatial predictions
The test dataset was used to make the spatial predictions of GAM

and BRT models for incidental catch of wahoo in EPO from 1998 to
2007.

3. Results

3.1. Generalized additive model

The final GAM for presence/absence of wahoo was  constructed
using the training dataset. This model explained 36% of total
deviance, and the component smooth functions of the fitted model
are shown in Fig. 1. The model predicts that the probability of inci-
dental catch for wahoo is high in sets made on floating objects,
when SST is in a range of 18–26 ◦C, at lower chlorophyll-a con-

centrations, and when sets are made at south of the equator. Whit
respect to SSH, longitude and ONI, the relationship between these
variables and incidental catch of wahoo was poor and no pattern
was observed.

http://coastwatch.pfeg.noaa.gov/erddap/index.html
http://www.cpc.ncep.noaa.gov/
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Table 1
Environmental variables used to model fish occurrence.

Variable Description Mean (range)

Longitude Longitude were set was  made 110.3◦W (144, 77)
Latitude Latitude were set was  made 14.25◦N (−14, 32)
SST Satellite-image based estimate of SST 26.9 ◦C (16.01, 31.93)
SSH  Satellite-image based estimate of SSH −0.01 m (−0.25, 0.42)
ONI  Oceanic Niño Index 0.04 (−1.60, 2.30)
Chlorophyll-a concentration Satellite-image based estimate of chlorophyll-a concentration 0.23 mg m−3 (0.03, 8.57)
Set  type Set type in three classes: unassociated, dolphin and floating object NA
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.2. Boosted regression trees

The final BRT model was constructed using the training dataset
ith learning rate value of 0.05, 5000 trees and tree complexity of 1.
ot interaction between variables was allowed using this criterion.
his model explained 47.3% of total deviance. Table 2 summarizes
he relative contributions of the predictor variables in the final

odel.
The most significant predictor variable was set type, contribut-
ng 58.3% to the overall model. Environmental variables (SST and
hlorophyll-a) had smaller, yet still important contributions to the
odel, ranging between 10 and 14%, suggesting important habitat

references for wahoo. Latitude was the spatial variable that had

able 2
ummary of the predictor variables and their relative contributions (%) to the BRT
odel.

Predictor variable Relative contribution (%)

Set type 58.3
SST 14.1
Chlorophyll-a 10.7
Latitude 7.8
SSH 4.0
Longitude 2.9
ONI 2.2
vironmental (SST, chlorophyll-a), spatial (latitude) and fishing characteristics (set
ted values.

the highest contribution to the model. SSH, longitude and ONI had
smaller contributions to the overall model.

Fig. 2 shows the relationships between presence of wahoo and
each predictor variable explained with BRT model. Set type was
the single most important predictor of variation of presence of
wahoo, with the highest probability of incidental catch being from
floating objects, and lowest probability of incidental catch on sets
associated to dolphins and unassociated schools. Environmental
parameters predicted that wahoo have a highest probability of inci-
dental catch for waters in a range of SST between 20 and 25 ◦C, and
low chlorophyll-a concentrations (<2 mg  m−3). Incidental catch of
wahoo with has the highest probability in sets made at latitudes
south of the equator.

3.3. Predictive performance

The comparison of predictive performance between GAM and
BRT indicates that the practical significance of any differences
between the models is minimal. All standard accuracy measures

had similar values (Table 3). For the test dataset GAM and BRT
achieved 90% at the point of equal sensitivity/specificity (ROC val-
ues). The main difference observed between these models was in
deviance explained, suggesting that BRT model have better predic-
tive performance than GAM.
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Fig. 2. Partial dependence plots for the six most influential variables in the model for wahoo. For explanation of variables and their units see Table 1. Y axes are on the logit
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.4. Spatial distribution of incidental catches of wahoo

Fig. 3 shows the spatial prediction of the probability of inci-
ental catch of wahoo as predicted by GAM and BRT models. Both
odels had very similar results in the spatial predictions. For both
odels the highest probability of incidental catch of wahoo was

redicted to occur in two regions: (1) off eastern Baja California
ur, Mexico (21–26◦N) and (2) both oceanic and coastal waters
outh of the equator (Fig. 3). Both areas had similar environmental
nd set data, with moderate to high presence of floating objects,
ST ranging from 17 to 28 ◦C and low mean values of chlorophyll-a
oncentrations (0.21–0.35 mg  m−2).

. Discussion

The results indicated that there is a high level of predictability
n the relationship between presence of wahoo as incidental catch
n EPO with set type, environment, and spatial predictors. For both
RT and GAM, set type was the strongest predictor, with a much
igher probability of incidental catch of wahoo in sets made on

oating objects. Interestingly, less than 3% of sets made by Mexican
urse-seine vessels were on floating objects, in contrast to the ∼25%
ade by the international fleet on this set type (IATTC, 2010).

able 3
tandard accuracy measures for both models.

Standard accuracy vales GAM BRT

Training set Test set Training set Test set

Deviance explained (%) 36.00 – 47.34 –
PCC 0.963 0.960 0.965 0.961
Sensitivity 0.164 0.171 0.182 0.187
Specificity 0.995 0.993 0.996 0.994
ROC 0.881 0.902 0.897 0.906
e six most important predictor variables and their relative contribution. Rug plots
es.

It is not surprising that there is a higher probability of incidental
catch of wahoo in sets on floating objects, as previous research has
suggested an affiliation for wahoo to occur around floating objects
(either natural or artificial) (Bailey et al., 1996; Romanov, 2002;
Oxenford et al., 2003; Maunder and Harley, 2006; IATTC, 2010).
While the advantages of this affiliation are unknown, Dagorn and
Fréon (1999) suggest that floating objects may act as a meeting
point for several species, thus providing social advantages such as
enhancing schooling behavior.

Sea surface temperature had the highest contribution to the BRT
model. We  observed a higher probability of incidental catches of
wahoo in waters with SST between 20 and 25 ◦C in both models.
A similar range of temperatures have been described as preferred
by the species from electronic tagging studies. Using archival tags,
Sepulveda et al. (2011) found that wahoo off Baja California Sur
spend the majority of time within water temperatures between
23 and 26 ◦C. Theisen (2007) observed a preferred SST range of
20–25 ◦C using pop-up satellite archival tags on wahoo off the
Atlantic US coast.

Chlorophyll-a concentration was the second environmental
variable in importance to BRT model. Brill and Lutcavage (2001)
suggest that chlorophyll-a concentration is an indirect surrogate
measure of forage abundance for large pelagic fishes. In contrast,
BRT and GAM models predicted high probability of incidental catch
of wahoo when values of chlorophyll-a were lower than 2 mg  m−3.
Similar results were reported by Su et al. (2008),  where they found
that the highest relative densities of blue marlin (Makaira nigri-
cans) in Pacific Ocean occur when chlorophyll-a is relatively low
(<0.2 mg  m−3). Sartimbul et al. (2010) found a direct correlation
between chlorophyll-a and CPUE of Sardinella lemuru after apply-
ing a 3-month moving average, due to the time that is needed to

transfer chlorophyll-a to S. lemuru via the food chain. We  posit that
the high probability of incidental catch of wahoo in environments
with low primary productivity may  be explained due to a similar
lag in the food chain.
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Fig. 3. Probability of incidental catch of wahoo across the fi

The BRT model predicted a higher probability of incidental catch
f wahoo areas with positive SSH (over 20 cm). Sea surface height
as been used as a proxy for upwelling and eddies, with nega-
ive values of SSH relating to oceanic features such as upwelling,
resence of gyres and a shallow mixed layer (Forsbergh, 1969;
akun, 1996; Domokos et al., 2007). If negative values of SSH relate
o higher productivity, these areas should see higher pelagic fish
bundance. While investigating this was beyond the scope of this
tudy, higher incidental catch of wahoo at positive SSH may  rep-
esent a similar lag in the food chain at these low productivity
reas.

In this study we found large-scale spatial variation in probabil-
ty of incidental catch of wahoo in the EPO. We  observed that there
re two regions with higher probability of presence of the species.
n the north, the region located off the east-coast of Baja California
ur, Mexico (21–26◦N), was predicted to have higher probability
f incidental catch of wahoo. Sepulveda et al. (2011),  mention that
ahoo play an important role in recreational fisheries in this region,

upporting private and charter vessels as well as commercial pas-
enger fishing vessels operating out of San Diego, California. They
lso suggest that species has some degree of seasonal fidelity for sea
ounts in the region, as revealed through archival tagging. Further-
ore, we suggest that this region is important for wahoo because

t has moderate quantities of floating objects – dominated by sea-
eed (Solana-Sansores, 2001a; Martínez-Rincón et al., 2009) – and

avorable environmental conditions.
At south of the equator, a higher probability of incidental catch

f wahoo was predicted in both coastal and oceanic waters. Impor-
ant incidental catches of sharks and pelagic fishes also occur in this
egion, particularly from purse-seine sets made on floating objects
Solana-Sansores, 2001b).  This region of EPO is strongly influenced
y the Peruvian Coastal Upwelling (PCU) and the south equatorial
urrent (SEC) (Pennington et al., 2006). The PCU region has been
elatively well studied, primarily because it supports the largest-
onnage fishery in the world, yielding 6–12 million metric tons
f anchoveta (Engraulis ringens) annually (FAO, 1993). This region
s defined by low sea surface temperatures and high rates of pri-

ary production, most strongly developed from 4 to 16◦S and to
00 km offshore (Pennington et al., 2006). The SEC has cooled water
hrough influx of the Peru Current with chlorophyll-a and produc-
ivity levels in this region relatively lower when compared with
quatorial upwelling and the PCU.

The prediction of incidental catch of wahoo using pres-

nce/absence data was satisfactory in our analyses, with almost 50%
ariation explained by the predictor variables used in BRT models.
e found that GAM and BRT models had similar predictive per-

ormance and the accuracy of predictions made by models were
 area as predicted from GAM (left) and BRT (right) models.

almost identical. Previous studies (Leathwick et al., 2006; Moisen
et al., 2006; Elith et al., 2008) have found that BRT had superior
predictive performance than GAM models. This is likely due to the
BRT models used in these studies were set to explore more com-
plicated interactions in predictor variables. However when both
models were set without interactions between predictor variables,
as is the case with this study, both models have similar results.

5. Conclusions

Our analyses indicate that while there is strong association
between the incidental catch of wahoo and set type (mainly
those sets made on floating object), environmental variables such
as SST (20–25 ◦C) and chlorophyll-a concentrations (<2 mg  m−3)
also contribute strongly to the presence of wahoo in purse-seine
catches. This information may  be useful as a baseline for monitor-
ing incidental catch of wahoo in the EPO, however consideration of
inter-annual variation within environment and long-term means
would be required. We consider GAM and BRT models are good
statistical techniques for modeling non-target species in fisheries,
because their ability to model non-linear effects between response
and predictor variables.
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